Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.

Identifieur interne : 000502 ( Main/Exploration ); précédent : 000501; suivant : 000503

Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.

Auteurs : Juan Camilo Castro [Colombie] ; Ivan Valdés [Colombie] ; Laura Natalia Gonzalez-García [Colombie] ; Giovanna Danies [Colombie] ; Silvia Ca As [Colombie] ; Flavia Vischi Winck [Brésil] ; Carlos Eduardo Stez [Colombie] ; Silvia Restrepo [Colombie] ; Diego Mauricio Ria O-Pach N [Brésil]

Source :

RBID : pubmed:30961611

Descripteurs français

English descriptors

Abstract

BACKGROUND

The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data.

METHOD

We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts.

RESULTS

We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases.

CONCLUSIONS

Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.


DOI: 10.1186/s12976-019-0103-7
PubMed: 30961611
PubMed Central: PMC6454757


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.</title>
<author>
<name sortKey="Castro, Juan Camilo" sort="Castro, Juan Camilo" uniqKey="Castro J" first="Juan Camilo" last="Castro">Juan Camilo Castro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valdes, Ivan" sort="Valdes, Ivan" uniqKey="Valdes I" first="Ivan" last="Valdés">Ivan Valdés</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Garcia, Laura Natalia" sort="Gonzalez Garcia, Laura Natalia" uniqKey="Gonzalez Garcia L" first="Laura Natalia" last="Gonzalez-García">Laura Natalia Gonzalez-García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Danies, Giovanna" sort="Danies, Giovanna" uniqKey="Danies G" first="Giovanna" last="Danies">Giovanna Danies</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Design, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Design, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ca As, Silvia" sort="Ca As, Silvia" uniqKey="Ca As S" first="Silvia" last="Ca As">Silvia Ca As</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winck, Flavia Vischi" sort="Winck, Flavia Vischi" uniqKey="Winck F" first="Flavia Vischi" last="Winck">Flavia Vischi Winck</name>
<affiliation wicri:level="4">
<nlm:affiliation>Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey=" Stez, Carlos Eduardo" sort=" Stez, Carlos Eduardo" uniqKey=" Stez C" first="Carlos Eduardo" last=" Stez">Carlos Eduardo Stez</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Restrepo, Silvia" sort="Restrepo, Silvia" uniqKey="Restrepo S" first="Silvia" last="Restrepo">Silvia Restrepo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ria O Pach N, Diego Mauricio" sort="Ria O Pach N, Diego Mauricio" uniqKey="Ria O Pach N D" first="Diego Mauricio" last="Ria O-Pach N">Diego Mauricio Ria O-Pach N</name>
<affiliation wicri:level="4">
<nlm:affiliation>Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30961611</idno>
<idno type="pmid">30961611</idno>
<idno type="doi">10.1186/s12976-019-0103-7</idno>
<idno type="pmc">PMC6454757</idno>
<idno type="wicri:Area/Main/Corpus">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000508</idno>
<idno type="wicri:Area/Main/Curation">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000508</idno>
<idno type="wicri:Area/Main/Exploration">000508</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.</title>
<author>
<name sortKey="Castro, Juan Camilo" sort="Castro, Juan Camilo" uniqKey="Castro J" first="Juan Camilo" last="Castro">Juan Camilo Castro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valdes, Ivan" sort="Valdes, Ivan" uniqKey="Valdes I" first="Ivan" last="Valdés">Ivan Valdés</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Garcia, Laura Natalia" sort="Gonzalez Garcia, Laura Natalia" uniqKey="Gonzalez Garcia L" first="Laura Natalia" last="Gonzalez-García">Laura Natalia Gonzalez-García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Danies, Giovanna" sort="Danies, Giovanna" uniqKey="Danies G" first="Giovanna" last="Danies">Giovanna Danies</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Design, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Design, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ca As, Silvia" sort="Ca As, Silvia" uniqKey="Ca As S" first="Silvia" last="Ca As">Silvia Ca As</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winck, Flavia Vischi" sort="Winck, Flavia Vischi" uniqKey="Winck F" first="Flavia Vischi" last="Winck">Flavia Vischi Winck</name>
<affiliation wicri:level="4">
<nlm:affiliation>Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey=" Stez, Carlos Eduardo" sort=" Stez, Carlos Eduardo" uniqKey=" Stez C" first="Carlos Eduardo" last=" Stez">Carlos Eduardo Stez</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Restrepo, Silvia" sort="Restrepo, Silvia" uniqKey="Restrepo S" first="Silvia" last="Restrepo">Silvia Restrepo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C</wicri:regionArea>
<wicri:noRegion>Bogotá D.C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ria O Pach N, Diego Mauricio" sort="Ria O Pach N, Diego Mauricio" uniqKey="Ria O Pach N D" first="Diego Mauricio" last="Ria O-Pach N">Diego Mauricio Ria O-Pach N</name>
<affiliation wicri:level="4">
<nlm:affiliation>Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Theoretical biology & medical modelling</title>
<idno type="eISSN">1742-4682</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Entropy (MeSH)</term>
<term>Gene Regulatory Networks (genetics)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Phytophthora infestans (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Entropie (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Phytophthora infestans (génétique)</term>
<term>Réseaux de régulation génique (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Regulatory Networks</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phytophthora infestans</term>
<term>Réseaux de régulation génique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Databases, Genetic</term>
<term>Entropy</term>
<term>Models, Theoretical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Bases de données génétiques</term>
<term>Entropie</term>
<term>Modèles théoriques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHOD</b>
</p>
<p>We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30961611</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-4682</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Theoretical biology & medical modelling</Title>
<ISOAbbreviation>Theor Biol Med Model</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.</ArticleTitle>
<Pagination>
<MedlinePgn>7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12976-019-0103-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data.</AbstractText>
<AbstractText Label="METHOD">We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts.</AbstractText>
<AbstractText Label="RESULTS">We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases.</AbstractText>
<AbstractText Label="CONCLUSIONS">Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Castro</LastName>
<ForeName>Juan Camilo</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Valdés</LastName>
<ForeName>Ivan</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gonzalez-García</LastName>
<ForeName>Laura Natalia</ForeName>
<Initials>LN</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Danies</LastName>
<ForeName>Giovanna</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Design, Universidad de los Andes, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cañas</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Winck</LastName>
<ForeName>Flavia Vischi</ForeName>
<Initials>FV</Initials>
<AffiliationInfo>
<Affiliation>Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ñústez</LastName>
<ForeName>Carlos Eduardo</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Restrepo</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-9016-1040</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riaño-Pachón</LastName>
<ForeName>Diego Mauricio</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Theor Biol Med Model</MedlineTA>
<NlmUniqueID>101224383</NlmUniqueID>
<ISSNLinking>1742-4682</ISSNLinking>
</MedlineJournalInfo>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="Y">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="Y">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019277" MajorTopicYN="N">Entropy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biological networks</Keyword>
<Keyword MajorTopicYN="Y">Entropy</Keyword>
<Keyword MajorTopicYN="Y">Gene regulation</Keyword>
<Keyword MajorTopicYN="Y">Information theory</Keyword>
<Keyword MajorTopicYN="Y">Transcription factors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30961611</ArticleId>
<ArticleId IdType="doi">10.1186/s12976-019-0103-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12976-019-0103-7</ArticleId>
<ArticleId IdType="pmc">PMC6454757</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2000 Jul 10;85(2):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10991308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):268-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11258382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 May;31(1):60-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 25;298(5594):799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Oct;40(1):4-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12948509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Oct;19 Suppl 2:ii122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Feb;5(2):101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14735121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2004 Jun;14(3):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15193307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 16;431(7006):308-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15372033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Jan;23(1):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):4935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2005 Jun;34(3):597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16119262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14724-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17003135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 May;39(5):683-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17417638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2007 Nov 16;99(20):204101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18233144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):433-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Nov 01;9:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jan;99(1):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19055438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2009 Apr 7;257(3):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2009 Feb;16(2):229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):429-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May;62(3):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Mar 25;11:154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20338053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20365053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2009 Dec 4;103(23):238701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20366183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Jun;5(6):769-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Sep 28;5(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 06;6(4):e16835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e40246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul 15;9(8):796-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Nov;11(11):1304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Iberoam Micol. 2013 Apr-Jun;30(2):81-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2012 Nov 22;6:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23173819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2011 Oct 13;2(4):689-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 06;9(11):e111841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 02;5:8665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25727453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Math Methods Med. 2015;2015:347273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26576197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2016 Mar-Apr;13(2):301-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27045829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2252-2257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29440433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Feb 21;8(1):3384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29467401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
<li>Colombie</li>
</country>
<region>
<li>État de São Paulo</li>
</region>
<settlement>
<li>São Paulo</li>
</settlement>
<orgName>
<li>Université de São Paulo</li>
</orgName>
</list>
<tree>
<country name="Colombie">
<noRegion>
<name sortKey="Castro, Juan Camilo" sort="Castro, Juan Camilo" uniqKey="Castro J" first="Juan Camilo" last="Castro">Juan Camilo Castro</name>
</noRegion>
<name sortKey=" Stez, Carlos Eduardo" sort=" Stez, Carlos Eduardo" uniqKey=" Stez C" first="Carlos Eduardo" last=" Stez">Carlos Eduardo Stez</name>
<name sortKey="Ca As, Silvia" sort="Ca As, Silvia" uniqKey="Ca As S" first="Silvia" last="Ca As">Silvia Ca As</name>
<name sortKey="Danies, Giovanna" sort="Danies, Giovanna" uniqKey="Danies G" first="Giovanna" last="Danies">Giovanna Danies</name>
<name sortKey="Gonzalez Garcia, Laura Natalia" sort="Gonzalez Garcia, Laura Natalia" uniqKey="Gonzalez Garcia L" first="Laura Natalia" last="Gonzalez-García">Laura Natalia Gonzalez-García</name>
<name sortKey="Restrepo, Silvia" sort="Restrepo, Silvia" uniqKey="Restrepo S" first="Silvia" last="Restrepo">Silvia Restrepo</name>
<name sortKey="Valdes, Ivan" sort="Valdes, Ivan" uniqKey="Valdes I" first="Ivan" last="Valdés">Ivan Valdés</name>
</country>
<country name="Brésil">
<region name="État de São Paulo">
<name sortKey="Winck, Flavia Vischi" sort="Winck, Flavia Vischi" uniqKey="Winck F" first="Flavia Vischi" last="Winck">Flavia Vischi Winck</name>
</region>
<name sortKey="Ria O Pach N, Diego Mauricio" sort="Ria O Pach N, Diego Mauricio" uniqKey="Ria O Pach N D" first="Diego Mauricio" last="Ria O-Pach N">Diego Mauricio Ria O-Pach N</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000502 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000502 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30961611
   |texte=   Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30961611" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024